Last Updated on 2023-12-13 by admin
在托福考試中,考生會遇到各式各樣的學術型題目,分子生物學(Molecular biology)就是常見的主題之一。這次Altas101為大家簡單介紹CRISPR-Cas9,認識基因編輯技術的發展與應用。
本篇文章強調CRISPR-Cas9技術的優勢,包括速度、精確度和多樣性,以及其在醫學和農業領域的潛在應用。同時,提到了應用這項技術需要面臨的倫理和規範挑戰,強調了技術發展應該是明智和可持續的,並且需尊重生態平衡。
閱讀本篇文章,可以幫助考生增加相關單字量,對該主題有更多的認識。之後在考場遇到相關主題的文章,可以事半功倍,成功拿下分數。
Table of Contents
Toggle托福背景知識與托福單字
- The Rise of CRISPR-Cas9 Technology(CRISPR-Cas9 技術的興起):
- Traditional gene editing has long been an intricate and time-consuming process.The advent of CRISPR-Cas9 technology has expedited the speed and precision of gene editing experiments.(過去基因編輯一直是複雜且耗時複雜的挑戰。CRISPR-Cas9技術的出現加快了基因編輯實驗的速度和精確度。)
- The simplicity and efficiency of this technology allow scientists to rapidly conduct gene experiments and obtain results.(這項技術的簡單性和高效性使科學家能夠更迅速進行基因實驗並獲得結果。)
intricate (adj.) 複雜的,錯綜複雜的
precision (n.) 精確,準確性
advent (n.) 出現,到來
- CRISPR-Cas9 Mechanism and Impact on Biological Research(CRISPR-Cas9機制及對生物學研究的影響):
- The CRISPR-Cas9 operation is akin to a precision gene scalpel, enabling swift gene modifications.This technology accelerates the progress of biological research.(CRISPR-Cas9操作就像一把精準的基因手術刀,可以實現快速的基因修改。這項技術加速了生物研究的進展。)
- Scientists can swiftly generate various genotypes, facilitating a profound understanding of gene functions and characteristics.(科學家能夠快速生成多種不同基因型的生物,深入理解基因的功能和特性。)
akin (adj.) 相似的,類似的
accelerate (v.) 加速
facilitate (v.) 促進,使便利
- Potential Implications in Medicine and Agriculture(對醫學和農業的潛在影響):
- In the medical field, CRISPR-Cas9 technology can be applied to treat diseases, including cancer.(在醫學領域,CRISPR-Cas9技術可應用於治療疾病,包括癌症。)
- In agriculture, gene editing technology holds the potential to enhance crop traits, improve yield, and elevate nutritional value.(在農業領域,基因編輯技術可以增強作物的性狀,提高產量和改善營養價值。)
- These applications bear significance in improving food supply and ensuring agricultural sustainability.(這些應用對於改善糧食供應和農業的可持續性具有重要意義)
trait (n.) – 特徵,性狀
elevate (v.) – 提升
sustainability (n.) – 永續性
延伸閱讀:CRISPR-Cas9基因編輯技術
In the past, gene editing was typically a time-consuming and intricate process. Scientists invested significant time and effort in genetic modification experiments, often requiring multiple attempts to achieve precise modifications. However, with the emergence of CRISPR-Cas9 technology, everything has changed. The simplicity and efficiency of this technology allow scientists to expedite gene experiments and swiftly obtain experimental results.
The operation of CRISPR-Cas9 is analogous to a precise genetic scissors. Scientists need only design target gene sequences and apply this technology to the genome of organisms. Typically, gene modifications can be completed in a matter of days or weeks, enabling scientists to rapidly explore the impact of various gene modifications on organisms, accelerating advancements in biological research.
Scientists can quickly generate diverse genotypes of organisms and compare the differences between them, gaining a profound understanding of gene functions in specific traits and functionalities. This rapid exploration capability is crucial for biological research and applications, helping us delve deeper into understanding how biology operates and providing endless possibilities for future innovations in medicine and agriculture.
In the medical field, scientists can utilize this technology to genetically modify pathogens, creating more effective treatment methods. They can even modify genes related to cancer, attenuating the malignant characteristics of cancer cells. This may not only lead to safer and more precise cancer treatments but also offer new solutions for treating rare diseases.
In agriculture, gene editing technology offers possibilities for enhancing crop resistance to diseases, tolerance to drought, and nutritional value. Scientists can modify crop genes to enable growth in adverse conditions, thereby increasing crop yield and quality. This holds significant importance in meeting the growing global demand for food and improving agricultural sustainability.
However, the development of gene editing technology requires more discussions, ethical reviews, and regulations to ensure its application is wise and sustainable. It must respect the essence of biology and ecological balance, bringing genuine benefits to our world.
如果你想透過閱讀更多學術主題文章來提升英文能力,歡迎看更多Atlas101部落格文章,或者報名體驗Atlas101線上托福課程!Atlas101提供專業的互動式系統訓練課程,並有經驗豐富的師資團隊協助你在英文聽說讀寫各方面取得更好的成績,實現理想的目標分數。請隨時聯絡我們,我們期待能協助你!
延伸閱讀中文翻譯
過去,基因編輯通常是一項耗時且複雜的過程。科學家需要耗費大量時間和精力進行基因修改實驗,且可能需要多次嘗試才能達到精確的修改效果。然而,隨著CRISPR-Cas9技術的出現,一切都翻轉了。這種技術的簡單性和高效性使科學家能夠更快速地進行基因實驗,迅速獲得實驗結果。
CRISPR-Cas9的工作原理類似於一把精密的基因剪刀。科學家只需設計目標基因序列,然後將這項技術應用於生物體的基因組中。通常,僅需數天或幾週,就能完成基因的修改,使科學家更迅速地探索不同基因修改對生物體的影響,加速生物學研究的進展。
科學家能夠快速生成多種不同基因型的生物,並比較它們之間的差異,深入理解基因在特定特性和功能方面的作用。這種迅速探索的能力對生物學研究和應用至關重要,幫助我們更深刻理解生物運作方式,並為未來醫學和農業創新提供無限可能。
在醫學領域,科學家能夠利用這種技術對病原體進行基因修改,創造更有效的治療方法,甚至修改癌症相關基因,減弱癌細胞的惡性特性。這不僅可能帶來更安全和精準的癌症治療,還可能為罕見疾病的治療提供新的解決方案。
在農業領域,基因編輯技術為增強作物的抗病性、耐旱性和營養價值提供了可能性。科學家能夠修改作物基因,使其能夠在惡劣環境下生長,從而提高農作物的產量和品質。這對於滿足全球不斷增長的食品需求和改善農業的可持續性具有重要意義。
然而,基因編輯技術的發展需要更多的討論、倫理審查和規範,確保其應用是明智和可持續的,尊重生物的本質和生態平衡,為我們的世界帶來真正的益處。